Part Number Hot Search : 
NTE25 SI9802DY TDA2545A 25160 SP9841 BLV33F FM102 SPLSI
Product Description
Full Text Search
 

To Download TBB1008 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 To all our customers
Regarding the change of names mentioned in the document, such as Hitachi Electric and Hitachi XX, to Renesas Technology Corp.
The semiconductor operations of Mitsubishi Electric and Hitachi were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Hitachi, Hitachi, Ltd., Hitachi Semiconductors, and other Hitachi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself. Renesas Technology Home Page: http://www.renesas.com
Renesas Technology Corp. Customer Support Dept. April 1, 2003
Cautions
Keep safety first in your circuit designs! 1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party. 2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page (http://www.renesas.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein.
TBB1008
Twin Build in Biasing Circuit MOS FET IC VHF/UHF RF Amplifier
ADE-208-1599 (Z) Rev.0 Jun. 2002 Features
* Small SMD package CMPAK-6 built in twin BBFET; To reduce using parts cost & PC board space. * Suitable for World Standard Tuner RF amplifier. * Very useful for total tuner cost reduction. * Withstanding to ESD; Build in ESD absorbing diode. Withstand up to 200 V at C = 200 pF, Rs = 0 conditions. * Provide mini mold packages; CMPAK-6
Outline
CMPAK-6
6
5
4
2 1
3
1. Gate-1(1) 2. Source 3. Drain(1) 4. Drain(2) 5. Gate-2 6. Gate-1(2)
Notes:
1. 2.
Marking is "HM". TBB1008 is individual type number of HITACHI TWIN BBFET.
TBB1008
Absolute Maximum Ratings
(Ta = 25C)
Item Drain to source voltage Gate1 to source voltage Gate2 to source voltage Drain current Channel power dissipation Channel temperature Storage temperature Symbol VDS VG1S VG2S ID Pch Tch Tstg
*3
Ratings 6 +6 -0 +6 -0 30 250 150 -55 to +150
Unit V V V mA mW C C
Notes: 3. Value on the glass epoxy board (50 mm x 40 mm x 1 mm).
Rev.0, Jun. 2002, page 2 of 12
TBB1008
Electrical Characteristics
The below specification are applicable for UHF unit (FET1) (Ta = 25C)
Item Drain to source breakdown voltage Gate1 to source breakdown voltage Gate2 to source breakdown voltage Symbol Min V(BR)DSS V(BR)G1SS V(BR)G2SS 6 +6 +6 -- -- 0.5 0.5 13 21 1.4 1.0 -- 16 Typ -- -- -- -- -- 0.7 0.7 17 26 1.8 1.4 0.02 21 Max -- -- -- +100 +100 1.0 1.0 21 32 2.2 1.8 0.04 -- Unit V V V nA nA V V mA mS pF pF pF dB Test Conditions ID = 200 A, VG1S = VG2S = 0 IG1 = +10 A, VG2S = VDS = 0 IG2 = +10 A, VG1S = VDS = 0 VG1S = +5 V, VG2S = VDS = 0 VG2S = +5 V, VG1S = VDS = 0 VDS = 5 V, VG2S = 4 V, ID = 100 A VDS = 5 V, VG1S = 5 V, ID = 100 A VDS = 5 V, VG1 = 5 V VG2S = 4 V, RG = 100 k VDS = 5 V, VG1 = 5 V, VG2S = 4 V RG = 100 k, f = 1 kHz VDS = 5 V, VG1 = 5 V VG2S =4 V, RG = 100 k f = 1 MHz VDS = VG1 = 5 V, VG2S = 4 V RG = 100 k, f = 900 MHz Zi = S11*, Zo = S22* (:PG) Zi = S11opt (:NF)
Gate1 to source cutoff current IG1SS Gate2 to source cutoff current IG2SS Gate1 to source cutoff voltage VG1S(off) Gate2 to source cutoff voltage VG2S(off) Drain current Forward transfer admittance Input capacitance Output capacitance Reverse transfer capacitance Power gain ID(op) |yfs| Ciss Coss Crss PG
Noise figure
NF
--
1.7
2.5
dB
Rev.0, Jun. 2002, page 3 of 12
TBB1008
The below specification are applicable for VHF unit (FET2) (Ta = 25C)
Item Drain to source breakdown voltage Gate1 to source breakdown voltage Gate2 to source breakdown voltage Symbol Min V(BR)DSS V(BR)G1SS V(BR)G2SS 6 +6 +6 -- -- 0.5 0.5 16 27 2.3 1.4 -- 24 -- Typ -- -- -- -- -- 0.75 0.75 20 32 2.7 1.8 0.03 29 1.2 Max -- -- -- +100 +100 1.0 1.0 24 38 3.1 2.2 0.05 -- 1.7 Unit V V V nA nA V V mA mS pF pF pF dB dB Test Conditions ID = 200 A, VG1S = VG2S = 0 IG1 = +10 A, VG2S = VDS = 0 IG2 = +10 A, VG1S = VDS = 0 VG1S = +5 V, VG2S = VDS = 0 VG2S = +5 V, VG1S = VDS = 0 VDS = 5 V, VG2S = 4 V, ID = 100 A VDS = 5 V, VG1S = 5 V, ID = 100 A VDS = 5 V, VG1 = 5 V, VG2S = 4 V RG = 100 k VDS = 5 V, VG1 = 5 V, VG2S =4 V RG = 100 k, f = 1 kHz VDS = 5 V, VG1 = 5 V VG2S =4 V, RG = 100 k f = 1 MHz VDS = VG1 = 5 V, VG2S = 4 V RG = 100 k, f = 200 MHz
Gate1 to source cutoff current IG1SS Gate2 to source cutoff current IG2SS Gate1 to source cutoff voltage VG1S(off) Gate2 to source cutoff voltage VG2S(off) Drain current Forward transfer admittance Input capacitance Output capacitance Reverse transfer capacitance Power gain Noise figure ID(op) |yfs| Ciss Coss Crss PG NF
Rev.0, Jun. 2002, page 4 of 12
TBB1008
Test Circuits
* DC Biasing Circuit for Operating Characteristic Items (ID(op), |yfs|, Ciss, Coss, Crss, NF, PG)
* Measurment of FET1
Gate 2 VG2 Open Open
RG VG1 Gate 1 Source Drain
A
ID VD
* Measurment of FET2
VG2
Gate 2 RG VG1 Gate 1 Drain A ID VD
Open Source
Open
Rev.0, Jun. 2002, page 5 of 12
TBB1008
* Equivalent Circuit
No.1 Gate-1(1) BBFET-(1) No.2 Source BBFET-(2) No.5 Gate-2 No.6 Gate-1(2)
No.3 Drain(1)
No.4 Drain(2)
* 200 MHz Power Gain, Noise Figure Test Circuit
VT 1000 p VG2 1000 p VT 1000 p
47 k Input (50 ) 1000 p 36 p L1
1000 p
47 k
TWINBBFET L2 1000 p
47 k
Output (50 )
10p max 1000 p 1SV70 RG 100k RFC 1SV70
1000 p V D = V G1 Unit : Resistance () Capacitance (F)
L1 : 1 mm Enameled Copper Wire,Inside dia 10 mm, 2 Turns L2 : 1 mm Enameled Copper Wire,Inside dia 10 mm, 2 Turns RFC : 1mm Enameled Copper Wire,Inside dia 5 mm, 2 Turns
Rev.0, Jun. 2002, page 6 of 12
TBB1008
Maximum Channel Power Dissipation Curve Typical Output Characteristics (FET1) 25 V G2S = 4 V V G1 = VDS 20
R k G=
Pch* (mW)
400
82
Channel Power Dissipation
200
Drain Current
10
0 12
15
18
15
0
0
0k
10
100
5
0
50
100
150 Ta (C)
200
0
Ambient Temperature
1 2 3 Drain to Source Voltage
4 5 V DS (V)
* Value on the glass epoxy board (50mm x 40mm x 1mm)
I D (mA)
20
V DS = 5 V R G = 100 k
4V
Forward Transfer Admittance |y fs | (mS)
25
Drain Current vs. Gate1 Voltage (FET1)
50
Forward Transfer Admittance vs. Gate1 Voltage (FET1) V DS = 5 V V G2S = 4 V
40
15
3V
30
100 k
R G = 68 k
Drain Current
10
2V
20
150 k
5
VG2S = 1 V
10
0
1 2 Gate1 Voltage
3 V G1
4 (V)
5
0
1
2
3
4 V G1 (V)
k
k
k
k
300
I D (mA)
68
5
Gate1 Voltage
Rev.0, Jun. 2002, page 7 of 12
TBB1008
Drain Current vs. Gate Resistance (FET1) 4
Input Capacitance Ciss (pF)
Input Capacitance vs. Gate2 to Source Voltage (FET1)
30 25 20 15 10 5 0 10
Drain Current I D (mA)
V DS = 5 V V G1 = 5 V V G2S = 4 V
3
2 V DS = 5 V V G1 = 5 V R G = 100 k f = 1 MHz 0 1 2 3 4
1
20
50
100 200
500 1000
0
Gate Resistance R G (k)
Gate2 to Source Voltage V G2S (V)
Typical Output Characteristics (FET2) 25
I D (mA)
k
25 V G2S = 4 V V G1 = VDS
68 k
Drain Current vs. Gate1 Voltage (FET2) V DS = 5 V R G = 100 k
4V
3V
I D (mA) Drain Current
G=
82
R
10
k
0
k
20
20
Drain Current
12
15
15
10
k 50 1 0k 18
0
10
2V
5
5
VG2S = 1 V
0
1 2 3 Drain to Source Voltage
4 5 V DS (V)
0
1 2 Gate1 Voltage
3 V G1
4 (V)
5
Rev.0, Jun. 2002, page 8 of 12
TBB1008
Forward Transfer Admittance vs. Gate1 Voltage (FET2) 30 V DS = 5 V V G2S = 4 V
R G = 68 k
Forward Transfer Admittance |y fs | (mS)
50
Drain Current vs. Gate Resistance (FET2) V DS = 5 V V G1 = 5 V V G2S = 4 V
40
Drain Current I D (mA)
25 20 15 10 5 0 10
30
100 k 150 k
20
10
0
1
2
3
4 V G1 (V)
5
20
50
100 200
500 1000
Gate1 Voltage
Gate Resistance R G (k)
Input Capacitance vs. Gate2 to Source Voltage (FET2) 4
Input Capacitance Ciss (pF)
Power Gain vs. Gate Resistance (FET2) 40 35
3
Power Gain PG (dB)
30 25 20 15 10 10 V DS = 5 V V G1 = 5 V V G2S = 4 V f = 200 MHz 20 50 100 200 500 1000 Gate Resistance R G (k)
2 V DS = 5 V V G1 = 5 V R G = 100 k f = 1 MHz 0 1 2 3 4
1
0
Gate2 to Source Voltage V G2S (V)
Rev.0, Jun. 2002, page 9 of 12
TBB1008
Noise Figure vs. Gate Resistance (FET2) 4 0 V DS = 5 V V G1 = 5 V V G2S = 4 V f = 200 MHz Gain Reduction vs. Gate2 to Source Voltage (FET2)
Gain Reduction GR (dB)
Noise Figure NF (dB)
3
10
20
2
30 V DS = V G1 = 5 V R G = 100 k
1
40
0 10
50 20 50 100 200 500 1000 Gate Resistance R G (k)
4
3
2
1
0
Gate2 to Source Voltage V G2S (V)
Rev.0, Jun. 2002, page 10 of 12
TBB1008
Package Dimensions
As of January, 2002
Unit: mm
2.0 0.2 1.3 0.2 (0.65) (0.65)
(0.425) 1.25 0.1 (0.425)
0.15 - 0.05
+ 0.1
2.1 0.3
0 - 0.1
6-0.2
+ 0.1 - 0.05
(0.2)
0.9 0.1
Hitachi Code JEDEC JEITA Mass (reference value)
CMPAK-6 -- Conforms 0.006 g
Rev.0, Jun. 2002, page 11 of 12
TBB1008
Disclaimer
1. Hitachi neither warrants nor grants licenses of any rights of Hitachi's or any third party's patent, copyright, trademark, or other intellectual property rights for information contained in this document. Hitachi bears no responsibility for problems that may arise with third party's rights, including intellectual property rights, in connection with use of the information contained in this document. 2. Products and product specifications may be subject to change without notice. Confirm that you have received the latest product standards or specifications before final design, purchase or use. 3. Hitachi makes every attempt to ensure that its products are of high quality and reliability. However, contact Hitachi's sales office before using the product in an application that demands especially high quality and reliability or where its failure or malfunction may directly threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment or medical equipment for life support. 4. Design your application so that the product is used within the ranges guaranteed by Hitachi particularly for maximum rating, operating supply voltage range, heat radiation characteristics, installation conditions and other characteristics. Hitachi bears no responsibility for failure or damage when used beyond the guaranteed ranges. Even within the guaranteed ranges, consider normally foreseeable failure rates or failure modes in semiconductor devices and employ systemic measures such as failsafes, so that the equipment incorporating Hitachi product does not cause bodily injury, fire or other consequential damage due to operation of the Hitachi product. 5. This product is not designed to be radiation resistant. 6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without written approval from Hitachi. 7. Contact Hitachi's sales office for any questions regarding this document or Hitachi semiconductor products.
Sales Offices
Hitachi, Ltd.
Semiconductor & Integrated Circuits Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Tel: (03) 3270-2111 Fax: (03) 3270-5109
URL
http://www.hitachisemiconductor.com/
For further information write to:
Hitachi Semiconductor (America) Inc. 179 East Tasman Drive San Jose,CA 95134 Tel: <1> (408) 433-1990 Fax: <1>(408) 433-0223 Hitachi Europe Ltd. Electronic Components Group Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: <44> (1628) 585000 Fax: <44> (1628) 585200 Hitachi Europe GmbH Electronic Components Group Dornacher Strae 3 D-85622 Feldkirchen Postfach 201, D-85619 Feldkirchen Germany Tel: <49> (89) 9 9180-0 Fax: <49> (89) 9 29 30 00 Hitachi Asia Ltd. Hitachi Tower 16 Collyer Quay #20-00 Singapore 049318 Tel : <65>-6538-6533/6538-8577 Fax : <65>-6538-6933/6538-3877 URL : http://semiconductor.hitachi.com.sg Hitachi Asia Ltd. (Taipei Branch Office) 4/F, No. 167, Tun Hwa North Road Hung-Kuo Building Taipei (105), Taiwan Tel : <886>-(2)-2718-3666 Fax : <886>-(2)-2718-8180 Telex : 23222 HAS-TP URL : http://www.hitachi.com.tw Hitachi Asia (Hong Kong) Ltd. Group III (Electronic Components) 7/F., North Tower World Finance Centre, Harbour City, Canton Road Tsim Sha Tsui, Kowloon Hong Kong Tel : <852>-2735-9218 Fax : <852>-2730-0281 URL : http://semiconductor.hitachi.com.hk
Copyright (c) Hitachi, Ltd., 2002. All rights reserved. Printed in Japan.
Colophon 6.0
Rev.0, Jun. 2002, page 12 of 12


▲Up To Search▲   

 
Price & Availability of TBB1008

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X